PH4

Question		Marking details	Marks Available
6	(a)	$\begin{aligned} r & =1.0 \times 10^{8} \mathrm{~m} \text { [unit conversion] (1) } \\ g & =\frac{G M_{\mathrm{E}}}{r^{2}}=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{\left(1.0 \times 10^{8}\right)^{2}}(1) \text { [e.c.f. for this mark only] } \\ & =0.04 \mathrm{~N} \mathrm{~kg}^{-1}, \text { Statement "agreement with graph" or equiv (1) } \end{aligned}$	2
	(b)	Moon has a [much] smaller mass than the Earth. [or converse]	1
	(c)	$3.45[\pm 0.05] \times 10^{5} \mathrm{~km} \text { (from graph) (1) }$ No resultant gravitational field [or fields of Earth and Moon equal and opposite] or fields balance at this point. [or equiv](1)	2
	(d)	From M to point of intersection / at start $\mathrm{F}_{\text {moon }}>\mathrm{F}_{\text {earth }}$ (1) At point of intersection: $\mathrm{F}_{\text {moon }}=\mathrm{F}_{\text {earth }}$ (1) From point of intersection to earth / at end $\mathrm{F}_{\text {earth }}>\mathrm{F}_{\text {moon }}$ (1) [-1 for fields rather than forces; -1 not using resultant at least once]	3
	(e)	More (1) because gravitational fields of Earth and Moon reinforce [or equiv] and act towards centre of moon opposite to rocket motion. (1) Or [if considering escape from the E / M system] Less because of initial greater PE [less negative] due to Earth's field.	2
			[11]

Question			Marking details	Marks Available
7.	(a)		$\begin{aligned} & T=1090 \times 24 \times 60 \times 60\left[=9.42 \times 10^{7} \mathrm{~s}\right] \text { [unit conversion] (1) } \\ & r_{\mathrm{s}}=\frac{T v_{\mathrm{s}}}{2 \pi}(1) \text { or equiv e.g. } v=\frac{d}{t} \text { and } d \pi r=6.82 \times 10^{8} \mathrm{~m}(1) \end{aligned}$	3
	(b)	(i)	$T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{\mathrm{S}}+M_{\mathrm{P}}\right)}}$ (equation selection) (1) [or by impl] $\left(M_{\mathrm{S}} \gg M_{\mathrm{P}}\right)[$ or by impl $] \rightarrow T=2 \pi \sqrt{\frac{d^{3}}{G M_{\mathrm{S}}}}(1)$ $d=\sqrt[3]{\frac{T^{2} G M_{\mathrm{s}}}{4 \pi^{2}}}$ (rearrangement) (1) [or with numbers] Substitution and convincing calculation(1) [to give $\left.=3.21 \times 10^{11} \mathrm{~m}\right]$	4
		(ii)	Use of $M_{\mathrm{P}}=\frac{M_{s} r_{s}}{d}$ [in any orientation] or $m_{1} r_{1}=m_{2} r_{2}(1)$ $=\frac{2.2 \times 10^{30} \times 6.8 \times 10^{8}}{3.2 \times 10^{11}}=4.7 \times 10^{27} \mathrm{~kg}(1)$	2
	(c)		Find $\Delta \lambda$ in star's spectral lines arising from motion of star / Doppler shift (1) Find velocity of star using $\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$	2
				[11]

