PMT

Question		Marking details	Marks Available	
1	(a) (b)	Acceleration towards a fixed point [or central / equilibrium](1) and [directly] proportional to the distance from that point (1) Accept $a = -kx$ (1) with x defined	2	
		Smooth curve drawn which extends at least to \pm 19.5 mm [i.e. beyond the extreme points] symmetrically on at least 2 extremes.	1	
	(c)	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.5} [= 12.57 \text{ rad s}^{-1}]$	1	
	(d)	Either $v_{\text{max}} = r\omega$ [or by impl.] (1) $= 20 \times 10^{-3} \times 12.57$ [r range 19.5 - 21 mm] $= 0.25 \text{ m s}^{-1}$ (1) Or tangent drawn (1) $v_{\text{max}} = \frac{(30 - (-30)) \times 10^{-3}}{0.67 - 0.42}$ $= 0.24 \text{ m s}^{-1}$ (1)	2	
	(e)	Squaring $T = 2\pi \sqrt{\frac{m}{k}}$ i.e $T^2 = 4\pi^2 \frac{m}{k}$ or following substitution (1) Substitution (1) Rearranging and answer: $k = 6.32$ N m ⁻¹	2	
			[8]	

Question			Marking details	Marks Available
2.	(a)		 Any 2 × (1) of: forces between molecules negligible [or no forces] / molecules travel in straight lines between collisions ✓ volume [allow "size"] of molecules negligible / collision time small [cf time between collisions] ✓ molecules behave like perfectly elastically / have elastic collisions ✓ molecules exert forces [or pressure] on walls of container during collisions ✓ gasses consist of a large number of particles / molecules in random motion 	
	(b)		amount of gas, $n = \left[\frac{pV}{RT} = \frac{1.01 \times 10^5 \times (6 \times 5 \times 3)}{8.31 \times 293} = \right] 3730 \text{ mol (1)}$ no. of molecules $N = nN_A = 3730 \times 6.02 \times 10^{23} = 2.2 \times 10^{27} \text{ (1)}$	2
	(c)		$c_{\rm rms} = \sqrt{\frac{350^2 + 420^2 + 550^2}{3}} $ (1) [or by impl.] = 448 m s ⁻¹ (1)	2
	(d)		Density $\rho = (1) \frac{M}{V} = \frac{3733 \times \frac{29}{1000}(1)}{90} [= 1.203 \text{ kg m}^{-3}].$ Use of $p = \frac{1}{3}\rho \overline{c^2}(1)$. $[c_{\text{rms}} = 502 \text{ m s}^{-1}].$ (1)	2
			(i.e. use of $M/V(1)$; inserting ~3733 for $n(1)$; relating M to $Mr(1)$; use of $p = \frac{1}{3}\rho \overline{c^2}$ and substitution [or by impl.] (1))	4
	(e)	(i)	Time of travel $\sim 0.01 - 0.02$ s	1
		(ii)	No – time estimated is [far] too short (1) e.c.f from (i) Relay is much longer because of collisions between molecules [or equiv. eg takes time to diffuse / mean free path is very short] (1)	2
				[13]

Question			Marking details	Marks Available
3	(a)		$\Delta U = \text{increase [accept change / difference] in internal energy [of the gas](1) Q = \text{heat } \underline{\text{supplied [to] the gas (1)}} U = \text{work done } \underline{\text{by}} \text{ the gas (1)}$	3
	(b)		Readings from graph: $p = 120 \pm 2.5$ kPa; $V = 2.0 \times 10^{-3}$ m (1) $T = \frac{pV}{nR}$ (1)= $\frac{120 \times 10^3 \times 2.0 \times 10^{-3}}{0.1 \times 8.31}$ (1) [= 289 / 290 K]	3
	(c)		Work Done = 'area' under graph (1) Any reasonable method used correctly to estimate area, (1) e.g 27×1 cm squares × 'area' of 1 cm square $\rightarrow 169$ J or [approximating AB to straight line] area ~ $1.0 \times \frac{1}{2} \times [120 + 240]$ $\rightarrow 180$ \therefore a bit less than 180 J ~ 170 J.	2
	(d)	(i)	$\Delta V = 0 \text{ along AP (1)}$	2
		(ii)	So $W = p\Delta V = 0$ (1) Work done on gas (1) = $p\Delta V = 240$ J (1)	2
	(e)		Temperature at A and B are the same: $U_A = U_B$ so $\Delta U = 0$, so $Q = W$ [from 1 st law] (1) W is different for the two paths so Q is different. (1)	2
			" is anterent for the two paths so g is anterent. (1)	14
4.	(a)		Concentric equipotentials drawn (1) At least 3 outward radial electric field lines drawn symmetrically(1) [No labelling $\rightarrow -1$; no arrows on field lines $\rightarrow -1$]	2
	<i>(b)</i>	(i)	$KE = 8.3 \times 10^{-14} J$	1
		(ii)	At closest approach, all KE lost [or by impl.] (1) KE lost [or PE gained] = $q\Delta V_{\rm E}$ (1)	
			$\Delta V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} (1)$	
			Subst, manip + ans $\rightarrow r = 1.6 \times 10^{-13} \text{ m} (1) \text{ [e.c.f. on KE from (i)]}$	4
		(iii)	[It retraces its path] with electric PE decreasing (1) and KE increasing (1) or equiv.	2
		(iv)	Smooth symmetric curve drawn curving away from nucleus	1
				10

Que	stion		Marking details	Marks Available
5.	(a)	(i)	$N m^{-2} / Pa [or equiv.]$	1
		(ii)	Mass = $1.2 \times 2.0 \times 10^{-4} \times 1.00 \times 10^{3}$ [= 0.24 kg]	1
		(iii)	Change in momentum = $[0 -] 0.24 \times 1.24$ [= -0.29 N s ~ 0.3 N s]	1
		(iv)	Force = $\frac{\Delta mv}{t} = \frac{0.3(\text{e.c.f.})}{1} / 0.3 \text{ N}$ [equal and opposite force on wall	
			implied] (1)	
			Pressure = $\frac{F}{A} = \frac{0.3}{2.0 \times 10^{-4}} = 1500 \text{ Pa} [1450 \text{ Pa if } 0.29 \text{ N s used}] (1)$	2
	<i>(b)</i>	(i)	$\lambda = 660 \times 10^{-9} \text{ m} [\text{or equiv} - \text{unit conversion}] (1)$	
			$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{660 \times 10^{-9}} (1) \text{ [e.c.f. on unit conv.]} = 1.0 \times 10^{-27} \text{ N s (1)}$	3
		(ii)	Photon energy $E = hf = \frac{hc}{\lambda}(1) = 3.01 \times 10^{-19} \text{ J [or by impl.]}$	
			Number of photons in 1 s = $\frac{\text{Power}}{\text{energy of 1 photon}}$ (1) [= 3.32 × 10 ¹³]	
			Force = $\frac{\Delta p}{t}$ = 3.32 × 10 ⁻¹² N (1) [e.c.f. if only 1 photon used]	
			Pressure = 3.3×10^{-6} Pa (1)	
			[NB $F = \frac{P}{c} \rightarrow 1$ st 3 marks by impl]	
			[If pressure = 1×10^{-21} Pa given specified "per photon" – or equiv – then 1 mark]	4
				[12]

Que	estion	Marking details	Marks Available
6	<i>(a)</i>	$r = 1.0 \times 10^{8} \text{ m [unit conversion] (1)}$ $g = \frac{GM_{\rm E}}{r^{2}} = \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{(1.0 \times 10^{8})^{2}} (1) \text{ [e.c.f. for this mark only]}$	
		= 0.04 N kg ⁻¹ , Statement "agreement with graph" or equiv (1)	2
	<i>(b)</i>	Moon has a [much] smaller <u>mass</u> than the Earth. [or converse]	1
	(C)	3.45 $[\pm 0.05] \times 10^5$ km (from graph) (1) No resultant gravitational field [or fields of Earth and Moon equal and opposite] or fields balance at this point. [or equiv](1)	2
	(d)	From M to point of intersection / at start $F_{moon} > F_{earth}$ (1) At point of intersection: $F_{moon} = F_{earth}$ (1) From point of intersection to earth / at end $F_{earth} > F_{moon}$ (1) [- 1 for fields rather than forces; -1 not using resultant at least once]	3
	(e)	More (1) because gravitational fields of Earth and Moon <u>reinforce</u> [or equiv] and act towards centre of moon <u>opposite to rocket motion</u> . (1) Or [if considering escape from the E/M system] Less because of	_
		initial greater PE [less negative] due to Earth's field.	2
			[11]

Que	stion		Marking details	Marks Available
7.	(a)		$T = 1090 \times 24 \times 60 \times 60 = 9.42 \times 10^7 \text{ s] [unit conversion] (1)}$ $r_{\text{s}} = \frac{Tv_{\text{s}}}{2\pi} (1) \text{ or equiv e.g. } v = \frac{d}{t} \text{ and } d \pi r = 6.82 \times 10^8 \text{ m (1)}$	3
	(b)		$T = 2\pi \sqrt{\frac{d^3}{G(M_{\rm S} + M_{\rm P})}} \text{ (equation selection) (1) [or by impl]}$	
			$(M_{\rm S} >> M_{\rm P}) \text{ [or by impl]} \rightarrow T = 2\pi \sqrt{\frac{d^3}{GM_{\rm S}}} (1)$ $d = \sqrt[3]{\frac{T^2 GM_{\rm S}}{4\pi^2}} \text{ (rearrangement) (1) [or with numbers]}$	4
		(ii)	Substitution and convincing calculation(1) [to give = 3.21×10^{11} m] Use of $M_{\rm P} = \frac{M_s r_s}{d}$ [in any orientation] or $m_1 r_1 = m_2 r_2$ (1) $= \frac{2.2 \times 10^{30} \times 6.8 \times 10^8}{2.2 \times 10^{11}} = 4.7 \times 10^{27}$ kg (1)	2
	(c)		Find $\Delta\lambda$ in star's spectral lines arising from motion of star / Doppler shift (1)	
			Find velocity of star using $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$	2 [11]